

# Flame/Flow-Field Dynamics for Low Swirl Burners

Prof. Albert Ratner

Work done by students

Yun Huang, Hui Gao, Dal Mo Kang\*

10th International Workshop on Premixed Turbulent Flames

August 12- 13, 2006

Hotel Mainzer Hof

Mainz, Germany

# THE UNIVERSITY OF IOWA

#### Outline

- Introduction
  - Objective
  - Combustion instability
  - Thermoacoustic coupling
- Experimental system
  - Chamber & Imaging system
- Data processing
- Results and analysis
  - Rayleigh Index distribution from OH-PLIF
  - Comparison between OH-PLIF and OH chemiluminescence
- Conclusions



#### Introduction

#### Objective

- Examine the acoustics/combustion interaction for lean premixed low swirl stabilized flames
- The lean premixed burner used here has reduced emissions and good flame stability
- This burner is starting to see broader industrial use, which makes higher pressure behavior especially interesting

#### Combustion Instability

- Presence of an unwanted large amplitude pressure oscillation inside the combustion chamber
  - Vibration, noise, increased emission...
- Driving factors:
  - Thermoacoustic coupling, hydrodynamics, mixture-fraction oscillations...



# Introduction - Thermoacoustic Coupling

Wave equation

$$\nabla^2 \mathbf{p}' - \frac{1}{\mathbf{a}^2} \frac{\partial^2 \mathbf{p}'}{\partial \mathbf{t}^2} = -\frac{1}{\mathbf{a}^2} \frac{\mathbf{R}}{\mathbf{C}_{y}} \frac{\partial \mathbf{q}'}{\partial \mathbf{t}} + \mathbf{g}$$

- Superscript ()' denotes deviations from mean value, a is the speed of sound, and the term g contains all influences other than that of heat addition.
- Energy per cycle

$$\Delta \varepsilon_n(t) = (\gamma - 1) \frac{\omega_n^2}{E_n^2} \int dV \int_t^{t+\tau_n} \frac{p_n'}{\overline{p}} \frac{q'}{\overline{q}} dt$$

- n denotes different modes of the acoustic oscillation
- Rayleigh Index

$$R_f = \int_0^1 \frac{p'q'}{p_{rms}\overline{q}} d\xi$$

- Positive Rf means that pressure oscillation and heat release are in phase and hence the oscillation is enhanced
- In reality, a flame could be stable while exhibiting a positive Rayleigh Index since dissipation is not included in this equation



# Experimental System



- A: Loudspeakers D: Pressure Transducer
- G: Fuel/Air Inlets

- B: Speaker Section C: Quartz Window E: Swirl Burner F: Adjustable Premixer
- H: Nitrogen Co-flow



- Chamber size:
  - Diameter 12", height: 6'
- Low swirl burner:
  - Diameter 1", Length 2"



# Experimental System - Imaging

- Laser system
  - Nd: YAG pump laser, dye laser, frequency doubler
  - Sheet-forming optics
- Camera system
  - ICCD camera
  - View field: 8.9cm\*8.9cm(512\*512)
- Excitation detection
  - 283 nm pump beam with 310-350 nm detection



Simplified schematic view of imaging system



# Experimental System – Burner Configuration





- Robert-Cheng-design low-swirl burner
- Operational principle
  - generate the necessary flow divergence for stabilization (local flow velocity equals the flame speed)



# **Experimental Conditions**

Reactants

fuel: methane; oxidizer: air equivalence ratio:  $\Phi=0.5$ 

Flow rates:

air: 100 slpm, methane: 5 slpm

reactants: 3.48m/s (outlet of the burner)

Enforced acoustics

frequency: 22-120Hz amplitude: ~0.05%

Chamber bulk pressure:

P= 1atm



## Raw Data

### Images



OH-PLIF(gate 100ns)

OH\* (gate 400us)

### Pressure signal



Bulk pressure fluctuation

Acoustically enforced fluctuation



## Data Reduction



- No clear structure seen from OH concentration
- Pattern appears in Rayleigh Index



# Rayleigh Index distribution from OH-PLIF



Rayleigh Index at the center plane of the flame (f=37, 55, 65, 85, 100, 120 Hz)



#### Results

- The pattern becomes more established at higher frequency
- The size of the structure decreases as frequency increases
  - As expected for a frequency linked flow phenomena
- 'Lock on' observed
  - The frequency of vortex rollup can lock onto the frequency of a sound field if the amplitude of the acoustic oscillation is large enough and its frequency is sufficiently close to the natural frequency of vortex shedding.



## Results

The Rayleigh Index through a line running between the vortex core is extracted and a curve fit is applied



300 -**■**— k 280 2.8 Calculated Velocity (m/s) 260 240 220 200 180 160 2.0 70 80 90 100 110 120 60 Excitation acoutic frequency (Hz)

Rayleigh Index along the structure, 100Hz

Wavenumber and calculated velocity

$$k = \frac{2\pi}{\lambda} = 258$$
 ----Wave number  $v = \frac{2\pi f}{k} = 2.43 m/s$  ----comparable with the fluid velocity



## Comparison of OH-PLIF & OH\*



Rayleigh Index distribution from OH\*

- Chemiluminescence is not as helpful as PLIF to study the structures of interest for this flame.
  - \* denotes chemiluminescence



# On-going and Future Work

- Vary the imposed acoustic wave
  - Vary the amplitude
  - Broaden the frequency range
- Phase resolved information
  - The method laid out can be useful for examining flow structures that occur at any frequency and for any reason – how do we make the best use of this?
- High pressure
  - Currently assessing data at 3 atm
  - Plans are to gather data up to a bulk pressure of 5 atm



#### Conclusions

- Investigated the coupling of combustion and enforced acoustics for a low swirl stabilized lean premixed flame
- Toroidal structures are observed from Rayleigh Index distribution
- A nearly constant convection velocity of the structure is observed for different frequencies
  - Implying lock-on that dictates vortex size but that des not affect the advection speed
- Chemiluminescence is not as helpful as PLIF to resolve the structures of interest for this flame